Yayuan Liu, 31, is working to create modular carbon-capture devices that don’t rely on heat. Capturing carbon dioxide trapped in the air or released during factory production is an increasingly important part of our response to climate change. But the thermochemical mechanisms used today require most commercial factories with carbon-capture facilities to maintain a large, 24/7 operation. And sometimes they still consume fossil fuel to generate the heat. Instead, Liu is developing new methods that make carbon capture more universally accessible and climate friendly by replacing the thermal mechanisms with electrochemistry reactions, so that carbon dioxide can be split and released at normal temperatures and on a much smaller scale. Her vision is that “in the future, every household has a little carbon-capture device where they could deal with their own CO2 emissions,” Liu says. She developed 20 new nitrogen-based molecules that can be used to capture carbon dioxide, some reaching near-perfect efficiency. Finding viable molecules is only the first step. To turn the molecules into practical devices soon, Liu is now venturing beyond electrochemistry, where her expertise lies, and leading an interdisciplinary research group that draws on engineering, materials science, and biology.