Venkat Viswanathan, an associate professor at Carnegie Mellon, has made major strides in developing anodes made out of pure lithium, promising a new class of batteries that pack more energy and deliver more power for a given amount of weight. That could enable cheaper electric vehicles and low-emissions aircraft.
Researchers have long recognized that lithium-metal anodes could boost the performance of batteries over ones made of graphite. But they’re prone to developing needle-like “dendrites” as lithium ions build up. This can shorten the battery’s life and even spark fires. Viswanathan’s solution was developing a hybrid polymer-ceramic separator between the electrodes. It applies enough pressure to prevent the dendrites from forming but still allows ions to flow through the battery, which produces the electric current.
Viswanathan and colleagues secured more than $4 million from the Energy Department’s moonshot ARPA-E program, and partnered with battery maker 24M Technologies to produce and test commercial-size lithium-metal cells.
Viswanathan has also worked with Aurora Flight Sciences and Airbus A3 on battery designs for vertical takeoff and landing aircraft, which can function as air taxis or ambulances that zip across metropolitan areas.