Organisms that live in exotic environments have evolved unique traits in order to survive. Michelle Chang, an assistant professor of chemistry, hijacks the chemical reactions that confer those traits, combining them in novel ways. By inserting borrowed genes into easy-to-grow microbes such as E. coli, she creates organisms with new abilities.
In one project, she is creating a system that takes lignin, a tough polymer abundant in agricultural waste, and breaks it into molecules that can be converted into biofuels. Chang is also developing a way to incorporate fluorine into organic molecules. Many modern drugs--Lipitor, for instance--require at least one fluorine atom per molecule to perform their functions. But fluorine is difficult to add to molecules using traditional chemistry.
While her projects have important practical applications, Chang hopes that her work will lead to basic tools for engineering organisms that can perform all kinds of reactions that are too difficult, expensive, or dangerous with traditional chemistry. Read Chang's insights on why biomass could improve biofuel production. --Erika Jonietz