Marc Miskin has given life to a technology that’s eluded the world’s top nanoscientists for decades: robots too small to see. Miskin’s tiny bots piggyback on more than 50 years of electronics innovation, making it possible to build silicon chips smaller than the width of a human hair. The challenge was getting these circuits, which function as the robots’ brains, to move: previous approaches to connecting them to a pair of microscopic legs required too much voltage to work at such a tiny scale.
His technique fabricates legs from sheets of platinum a dozen or so atoms thick, capped on one side with an even smaller layer of titanium. When activated with a current—generated by solar cells attached to the robot brain—the platinum bends, causing the bot to march forward. Miskin’s initial prototype, which he developed as a postdoctoral researcher at Cornell University, requires only one-fifth of a volt to move and measures just 40 by 40 microns—smaller than many single-celled microorganisms. It’s recognized by Guinness World Records as the smallest ever walking robot, and a million of them at a time can be fabricated on a single 10-centimeter wafer.
For now, Miskin’s robot does little more than prance under a microscope, but his lab at the University of Pennsylvania, where he’s a professor of electrical and systems engineering, is fabricating limbs for a “smart bot” with programmable memory, developed with researchers at the University of Michigan. In the longer term, Miskin envisions tiny bots being used to engineer new materials, rid crops of pests, or even act as microscopic surgeons, programmed to eliminate cancer cells one by one.