Photo of Lina Nilsson

Biotechnology & medicine

Lina Nilsson

Lowering the cost of basic biological research.
Photographs by Winni Wintermeyer; Winni Wintermeyer

Year Honored
2013

Region
Global

The UC Berkeley bioengineering lab where Lina Nilsson worked as a postdoc is filled with the kind of expensive equipment necessary for advanced biological research. But many labs around the world don’t have UC-level funding; they rely on hand-me-downs from well-heeled labs or simply do without. That makes it hard for them to find solutions to local problems such as the spread of malaria, never mind participating in the broader scientific enterprise.

Nilsson offers another option: DIY. As cofounder of Tekla Labs, an engineering collective on the Berkeley campus, she’s curating and distributing open-source, do-it-yourself designs for the gamut of common lab gear. A shaker for separating excess dye from stained cells, for instance, can be made from a discarded record turntable. A centrifuge can be fashioned from a modified kitchen blender. A thermal cycler for amplifying DNA requires only light bulbs and thermometers. In the hands of scientists who historically have lacked access to equipment, such tools can be powerful engines of innovation—generally, Nilsson says, at about one-tenth the price of high-end commercial equipment.

“Great ideas are everywhere, but opportunity is not,” she says. “My goal is to enable people to collaborate to solve global challenges.” Along with her work at Tekla Labs, she serves as innovation director at UC Berkeley’s Blum Center for Developing Economies, where she devises programs that bring together NGOs, scientists, engineers, and local organizations worldwide.

Nilsson was an outstanding, if uninspired, PhD candidate at the University of Washington in 2007 when, on a whim, she applied for a Bonderman Travel Fellowship, an open-ended program that gives students eight months to “come to know the world in new ways.” She traveled to Asia and South America, where she visited local biology labs. “It completely changed everything about how I see the world,” she says. “The discordance between the engagement of the scientists and their empty labs was jarring, and the vision for Tekla Labs started to emerge.”

The challenge now is to make sure Tekla Labs’ designs consistently yield devices precise and durable enough for serious research. After all, scientists everywhere need equipment they can rely on.

Ted Greenwald

vision nilssonx519

Left: A magnetic stirrer was designed by a Tekla Labs contributor in New Zealand. Right: A rotator built by a member of the Tekla Labs team is designed to gently agitate biological samples.