Photo of Jie Xu

Nanotechnology & materials

Jie Xu

She makes durable, easy-to-manufacture polymer semiconductors for skin-like electronics.
WES AGRESTA

Year Honored
2021

Organization
Argonne National Laboratory

Region
Global

Hails From
US

Jie Xu has made printable, stretchable electronics viable for mass production. Her multiple breakthroughs could be used in future wearable technology, advanced robotics, and human-computer interfaces with sensors connected to the skin.

The key for Xu was inventing polymer circuits that kept working despite being flexed, stretched, and repeatedly moved. That had been a challenge for researchers until 2016, when Xu engineered a two-polymer coating applied to a rubbery surface that could be stretched to twice its size and still conduct electricity. 

In 2019, she refined the technology so that her stretchable semiconductors could be mass-produced using roll-to-roll manufacturing, a common industrial fabrication process used to print anything from textiles to plastics on large rollers. It was the first time anyone had achieved such a feat at scale. 

In the short term, Xu’s materials and manufacturing inventions can make flexible displays and skin-worn medical sensors much more practical and easy to make. Samsung Electronics has already patented two methods Xu helped define during collaboration with the company. Xu’s materials could also aid in the design of prosthetics with functional skin-like outer coverings. 

Wary of adding yet more plastics into the world, Xu is searching for versions of the polymer semiconducting materials that are recyclable or biodegradable. “I think that kind of idea should be integrated from the very beginning of any commercial material,” she says.