Christina Boville helped design a process that improves on biology’s way of controlling chemical reactions. She starts with natural enzymes—proteins that enable chemical reactions in living cells—and engineers them to produce useful chemicals that don’t exist in nature. The approach can reduce manufacturing times for compounds used in the pharmaceutical industry from months to days, shrink waste by up to 99%, and cut energy consumption in half.
In 2019, Boville cofounded Aralez Bio with David Romney and Frances Arnold, who won a Nobel Prize in 2018 for a new way of creating enzymes called directed evolution. Boville’s process creates chemicals known as non-canonical amino acids (ncAAs), which are used in making 12% of the 200 best-selling medicines, including those for migraines and diabetes, and are also used in agriculture. “Nature was built using 20 amino acids, and now our enzymes can make hundreds more,” she says. Drug ingredients “normally take five to 10 steps to make,” she adds, “but we can do it in a single step.”
Aralez Bio was recently approached by a pharmaceutical company to produce ncAAs that had taken the company nine months to make with conventional methods. Boville’s enzymes now makes the same compound overnight.