"Cyborg tissue could allow us to put multifunctional prosthetics in humans,” says Bozhi Tian. That goal is still a long way off, but Tian has taken a key step by creating artificially grown tissue that’s intelligent. So far, he’s developed a synthetic blood vessel that can detect the pH of solutions flowing through it. And with different nanoelectric sensors embedded in that and other tissue replacements, Tian thinks, the technology could one day wirelessly monitor proteins linked to cancer and other diseases.
Tian’s cyborg tissue project grew out of another impressive feat: an innovative method for detecting electrical changes in living cells. Instead of sticking fine-tipped glass pipettes into the cells, a conventional technique that ends up killing them within a few hours at most, Tian created a semiconductor device made of a kinked nanowire less than 50 nanometers wide at the tip.
He then coated the tip of his probe with molecules similar to those found in cell membranes, enabling the device to enter the cell with minimal damage. The implanted nanowires can potentially send information for days, and cells can tolerate multiple wires, making it possible to map complex changes across the cell.
By coating the wire with antibodies, which can be designed to latch onto a specific molecule, researchers could enable the tool to detect the presence of specific proteins seen when a particular disease state is getting better or worse. That could be useful for monitoring how cells respond to different compounds being considered for use as drugs.
Tian, an assistant professor at the University of Chicago, is currently working on equipping cells with electronic components that don’t merely monitor activity but actively affect it. Get ready for the cyborg cell.
—Susan Young